Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2,6-diamino-3,5-dibromopyridinium) hexabromidostannate(IV)

Rawhi H. Al-Far, ${ }^{\text {a }}$ Salim F. Haddad ${ }^{\text {b }}$ and Basem Fares $\mathrm{Ali}^{\mathrm{c} *}$
${ }^{\text {a Faculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, }}$ Jordan, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Jordan, Amman, Jordan, and ${ }^{\text {c }}$ Department of Chemistry, AI al-Bayt University, Mafraq 25113, Jordan Correspondence e-mail: bfali@aabu.edu.jo

Received 16 April 2009; accepted 23 April 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$; R factor $=0.059 ; w R$ factor $=0.146$; data-to-parameter ratio $=17.4$.

The asymmetric unit of the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{3}\right)_{2-}$ [SnBr_{6}], contains one cation and one half-anion in which the Sn atom is located on a crystallographic centre of inversion and is in a quasi-octahedral geometry. The crystal structure is assembled via hydrogen-bonding interactions of two kinds, N (pyridine/amine) $-\mathrm{H} \cdots \mathrm{Br}-\mathrm{Sn}$, along with $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Sn}$ interactions [3.4925 (19) \AA]. The cations are involved in $\pi-\pi$ stacking, which adds an extra supramolecularity as it presents a strong case of offset-face-to-face motifs [centroid-centroid distance $=3.577$ (3) \AA]. The intermolecular hydrogen bonds, short $\mathrm{Br} \cdots \mathrm{Br}$ interactions and $\pi-\pi$ stacking result in the formation of a three-dimensional supramolecular architecture.

Related literature

For general background to hybrid organic-inorganic compounds, see: Aruta et al. (2005); Hill (1998); Kagan et al. (1999); Knutson et al. (2005); Raptopoulou et al. (2002). For related structures, see: Al-Far \& Ali (2007); Al-Far, Ali \& AlSou'od (2007); Ali \& Al-Far (2007); Ali et al. (2008); Ali, AlFar \& Ng (2007); Awwadi et al. (2007); Tudela \& Khan (1991); Willey et al. (1998). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$
$M_{r}=1133.97$
Monoclinic, $P 2_{1} / c$
$a=8.3696$ (14) \AA
$b=16.720$ (2) \AA
$c=9.5814$ (15) \AA
$\beta=112.556$ (12) ${ }^{\circ}$

Data collection

Bruker P4 diffractometer
Absorption correction: ψ scan (XSCANS; Bruker, 1996)
$T_{\text {min }}=0.007, T_{\text {max }}=0.035$
2825 measured reflections
2162 independent reflections

$$
V=1238.3(3) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=17.18 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.146$
124 parameters
H-atom parameters constrained
$S=1.00$
2162 reflections
1437 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
3 standard reflections every 97 reflections intensity decay: 0.01%

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{Br} 1$	$2.6002(13)$	$\mathrm{Sn} 1-\mathrm{Br} 3$	$2.6131(14)$
$\mathrm{Sn} 1-\mathrm{Br} 2$	$2.5768(14)$		

Symmetry code: (i) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.54	$3.354(9)$	159
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.88	$3.612(12)$	144
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.79	$3.608(10)$	160
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.82	$3.604(10)$	153

Symmetry codes: (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z+1$.
Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The University of Jordan, Al-Balqa'a Applied University and Al al-Bayt University are thanked for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2669).

References

Al-Far, R. \& Ali, B. F. (2007). Acta Cryst. C63, m137-m139.
Ali, B. F. \& Al-Far, R. (2007). Acta Cryst. E63, m892-m894.
Ali, B. F., Al-Far, R. \& Al-Sou'od, K. (2007). J. Chem. Crystallogr. 37, 265-273.
Ali, B. F., Al-Far, R. H. \& Haddad, S. F. (2008). Acta Cryst. E64, m749-m750.
Ali, B. F., Al-Far, R. \& Ng, S. W. (2007). Acta Cryst. E63, m2102-m2103.

metal-organic compounds

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. \& Besagni, T. (2005). Appl. Phys. A, 81, 963-968.

Awwadi, F. F., Willett, R. D., Peterson, K. A. \& Twamley, B. (2007). J. Phys. Chem. A, 111, 2319-2328.
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Hill, C. L. (1998). Chem. Rev. 98, 1-2.

Kagan, C. R., Mitzi, D. B. \& Dimitrakopoulos, C. D. (1999). Science, 286, 945947.

Knutson, J. L., Martin, J. D. \& Mitzi, D. B. (2005). Inorg. Chem. 44, 4699-4705. Raptopoulou, C. P., Terzis, A., Mousdis, G. A. \& Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645-650.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tudela, D. \& Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003-1006. Willey, G. R., Woodman, T. J., Somasundaram, U., Aris, D. R. \& Errington, W. (1998). J. Chem. Soc. Dalton Trans. pp. 2573-2576.

supplementary materials

Acta Cryst. (2009). E65, m583-m584 [doi:10.1107/S1600536809015189]

Bis(2,6-diamino-3,5-dibromopyridinium) hexabromidostannate(IV)

R. H. Al-Far, S. F. Haddad and B. F. Ali

Comment

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems. Hybrid organic-inorganic compounds are of great interest owing to their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan et al., 1999; Raptopoulou et al., 2002). Tin metal-halo based hybrids are of particular interest as being materials with interesting optical and magnetic properties (Aruta et al., 2005; Knutson et al., 2005; Kagan et al., 1999). We are currently carrying out studies about lattice including different types of intermolecular interactions (aryl \cdots aryl, $X \cdots X, X \cdots$ aryl and $X \cdots \mathrm{H}$). Within our research of hybrid compounds containing tin metal (Al-Far \& Ali 2007; Al-Far, Ali \& Al-Sou'od, 2007; Ali \& Al-Far, 2007; Ali, Al-Far \& Ng, 2007), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains one cation and one-half anion, in which the Sn atom is located on a crystallographic centre of inversion and is in a quasi-octahedral geometry (Fig. 1 and Table 1). The Sn - Br bonds are in accordance with the corresponding values in similar compounds (Willey et al., 1998; Tudela \& Khan 1991; Ali et al., 2008; Al-Far \& Ali 2007). The pyridine ring of the starting cation have undergone bromination during the synthesis process (Al-Far \& Ali, 2007). In the cation, the bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure, weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 2) link the molecules into alternating layers of cations and stacks of anions (Fig. 2), in which they may be effective in the stabilization of the structure. The anion stacks are interacting with the cation layers in an extensive hydrogen bonding and $\mathrm{Br} \cdots \mathrm{Br}$ halogen bonding interactions. Each anion is surrounded by six cations via three $\mathrm{H}-\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$, one $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions and the symmetry related ones along with one $\mathrm{Br} \cdots \mathrm{Br}$ interaction $\left[\mathrm{Br} 2 \cdots \mathrm{Br} 4^{\mathrm{i}}=3.4925\right.$ (19) \AA, symmetry code (i): $2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$)] and the symmetry related one. On the other hand, each cation is associated with three anions, through six ($\left.\mathrm{N}_{\text {pyridinic }}, \mathrm{N}_{\text {aminic }}\right)-\mathrm{H} \cdots \mathrm{Br}-\mathrm{Sn}$ hydrogen bonding interactions, and by one $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{Sn}$ interaction. It is noteworthy that structural and theoretical results (Awwadi et al. 2007; and references therein), show the significance of linear $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ synthons in influencing structures of crystalline materials and in use as potential building blocks in crystal engineering via supramolecular synthesis.

Moreover, interactions between cations perpendicular to [101] represent a case of strong offset face-to-face $\pi-\pi$ motif. This is evident by the centroids separation distance of 5.059 (3) \AA, with the perpendicular distance between planes being 3.577 (3) \AA (the sliding angle between planes is $\left.45.0(3)^{\circ}\right)$.

Experimental

For the preparation of the title compound, the warm solution of SnCl_{2} metal (1.0 mmol) dissolved in absolute ethanol (15 ml) was mixed with a stirred hot solution of 2,6-diaminopyridine $(98 \% ; 2 \mathrm{mmol})$ dissolved in ethanol (20 ml). The mixture was acidified with $\mathrm{HBr}(48 \%, 2-3 \mathrm{ml})$, and then treated with liquid $\mathrm{Br}_{2}(2-3 \mathrm{ml})$. The resulting mixture was stirred for 3 h , and then allowed to evaporate at room temperature. The salt crystallized over 2 d , as nice parallelepiped yellow crystals (yield; 82\%).

supplementary materials

Refinement

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ (for NH and NH_{2}) and $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H , respectively, and constrained to ride on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code (A): $2-x, 1-y, 1$ - z].

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions are shown as dashed lines.

Bis(2,6-diamino-3,5-dibromopyridinium) hexabromidostannate(IV)

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{SnBr}_{6}\right]$
$F_{000}=1028$
$M_{r}=1133.97$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.3696$ (14) \AA
$b=16.720(2) \AA$
$c=9.5814(15) \AA$
$\beta=112.556$ (12) ${ }^{\circ}$
$V=1238.3(3) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=3.042 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
$\theta=5.7-12.5^{\circ}$
$\mu=17.18 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$

Cell parameters from 29 reflections

Parallelepiped, yellow
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295 \mathrm{~K}$
ω scans
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
$T_{\text {min }}=0.008, T_{\text {max }}=0.035$
2825 measured reflections
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\min }=2.4^{\circ}$
$h=-9 \rightarrow 1$
$k=-19 \rightarrow 1$
$l=-10 \rightarrow 11$
3 standard reflections
every 97 reflections

2162 independent reflections
1437 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.146$
$S=1.00$
2162 reflections
124 parameters
Primary atom site location: structure-invariant direct methods
intensity decay: 0.01%

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0766 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.97 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.62 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sn1	1.0000	0.5000	0.5000	$0.0284(3)$
Br 1	$1.06913(19)$	$0.61962(8)$	$0.68737(17)$	$0.0445(4)$
Br 2	$1.03622(19)$	$0.59582(8)$	$0.30353(17)$	$0.0447(4)$
Br 3	$0.66959(17)$	$0.53289(8)$	$0.39554(18)$	$0.0423(4)$
Br 4	$0.7063(2)$	$0.32003(9)$	$-0.12875(19)$	$0.0510(5)$
Br 5	$0.2397(2)$	$0.45315(8)$	$0.10813(18)$	$0.0483(4)$
N 1	$0.3496(13)$	$0.2261(5)$	$0.0181(12)$	$0.032(3)$
H 1	0.3148	0.1789	0.0281	0.039^{*}
N 2	$0.5374(16)$	$0.1644(6)$	$-0.0743(13)$	$0.047(3)$
H 2 A	0.6200	0.1663	-0.1066	0.056^{*}
H 2 B	0.4940	0.1190	-0.0650	0.056^{*}
N3	$0.1518(14)$	$0.2743(6)$	$0.1119(13)$	$0.044(3)$
H3A	0.1211	0.2259	0.1191	0.053^{*}
H3B	0.1029	0.3134	0.1386	0.053^{*}
C1	$0.4759(17)$	$0.2325(7)$	$-0.0381(15)$	$0.034(3)$
C2	$0.5364(17)$	$0.3061(7)$	$-0.0492(17)$	$0.036(3)$

C3	$0.4653(17)$	$0.3720(8)$	$-0.0099(15)$	$0.040(4)$
H3	0.5047	0.4227	-0.0212	0.048^{*}
C4	$0.3354(18)$	$0.3649(7)$	$0.0466(15)$	$0.034(3)$
C5	$0.2745(17)$	$0.2888(8)$	$0.0595(15)$	$0.039(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	$0.0293(7)$	$0.0234(6)$	$0.0365(8)$	$0.0000(5)$	$0.0169(6)$	$-0.0002(5)$
Br 1	$0.0485(9)$	$0.0374(7)$	$0.0537(10)$	$-0.0074(7)$	$0.0264(8)$	$-0.0159(7)$
Br 2	$0.0494(9)$	$0.0430(8)$	$0.0499(10)$	$-0.0016(7)$	$0.0279(8)$	$0.0093(7)$
Br 3	$0.0271(7)$	$0.0319(7)$	$0.0677(10)$	$0.0009(6)$	$0.0180(7)$	$-0.0014(7)$
Br 4	$0.0472(9)$	$0.0493(9)$	$0.0706(11)$	$-0.0030(8)$	$0.0381(9)$	$-0.0045(8)$
Br 5	$0.0480(9)$	$0.0333(7)$	$0.0680(11)$	$0.0059(7)$	$0.0272(9)$	$-0.0091(7)$
N 1	$0.037(6)$	$0.018(5)$	$0.055(8)$	$-0.003(5)$	$0.032(6)$	$-0.002(5)$
N 2	$0.061(9)$	$0.029(6)$	$0.059(8)$	$0.003(6)$	$0.032(7)$	$-0.011(6)$
N 3	$0.042(7)$	$0.035(6)$	$0.069(9)$	$-0.014(6)$	$0.037(7)$	$-0.017(6)$
C 1	$0.035(8)$	$0.024(6)$	$0.042(9)$	$0.007(6)$	$0.012(7)$	$-0.002(6)$
C 2	$0.037(8)$	$0.016(6)$	$0.063(9)$	$0.004(6)$	$0.028(7)$	$0.001(6)$
C 3	$0.038(9)$	$0.032(7)$	$0.048(9)$	$-0.018(7)$	$0.015(8)$	$0.007(6)$
C 4	$0.049(9)$	$0.017(6)$	$0.034(8)$	$-0.002(6)$	$0.013(7)$	$-0.004(5)$
C 5	$0.032(8)$	$0.046(8)$	$0.030(8)$	$-0.003(7)$	$0.004(6)$	$-0.012(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

Sn1-Br1	2.6002 (13)	N3-H3A	0.8600
$\mathrm{Sn} 1-\mathrm{Br} 1^{1}$	2.6002 (13)	N3-H3B	0.8600
$\mathrm{Sn} 1-\mathrm{Br} 2$	2.5768 (14)	$\mathrm{C} 1-\mathrm{N} 1$	1.362 (16)
$\mathrm{Sn} 1-\mathrm{Br} 2^{\text {i }}$	2.5768 (14)	$\mathrm{C} 1-\mathrm{N} 2$	1.349 (15)
$\mathrm{Sn} 1-\mathrm{Br} 3$	2.6131 (14)	$\mathrm{C} 1-\mathrm{C} 2$	1.350 (17)
$\mathrm{Sn} 1-\mathrm{Br} 3{ }^{\text {i }}$	2.6131 (14)	C2-Br4	1.868 (12)
N1-C5	1.357 (15)	C2-C3	1.372 (18)
N1-H1	0.8600	C3-C4	1.392 (18)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8600	C3-H3	0.9300
N2-H2B	0.8600	C4-Br5	1.878 (12)
N3-C5	1.328 (16)	C4-C5	1.394 (18)
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 1^{\text {i }}$	180.0	H2A-N2-H2B	120.0
$\mathrm{Br} 1^{\text {i }}-\mathrm{Sn} 1-\mathrm{Br} 3$	88.56 (5)	C5-N3-H3A	120.0
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 3^{\text {i }}$	88.56 (5)	C5-N3-H3B	120.0
$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{Br} 3$	91.44 (5)	H3A-N3-H3B	120.0
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 3^{\mathrm{i}}$	91.44 (5)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	123.9 (12)
$\mathrm{Br} 2-\mathrm{Sn} 1-\mathrm{Br} 1$	88.21 (5)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	117.8 (11)
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 1^{\mathrm{i}}$	88.21 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	118.3 (10)
$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Br} 1$	91.79 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 4$	120.9 (9)
$\mathrm{Br} 2-\mathrm{Sn} 1-\mathrm{Br} 1^{\text {i }}$	91.79 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.7 (11)
$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Sn} 1-\mathrm{Br} 2$	180.0	C3-C2-Br4	119.3 (9)

sup-4

supplementary materials

$\mathrm{Br} 2-\mathrm{Sn} 1-\mathrm{Br} 3$	$89.60(5)$
$\mathrm{Br}^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 3^{\mathrm{i}}$	$89.61(5)$
$\mathrm{Br}^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 3$	$90.39(5)$
$\mathrm{Br} 2-\mathrm{Sn} 1-\mathrm{Br}{ }^{\mathrm{i}}$	$90.39(5)$
$\mathrm{Br}^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{Br} 3$	180.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	117.6
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$124.9(10)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1$	117.6
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-179.9(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$2(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.9(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-3(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 4$	$4(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 4$	$-178.7(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$2(2)$
$\mathrm{Br} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.5(11)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.6(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 5$	$123.1(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.6(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 5$	$118.3(10)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$116.9(12)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{N} 1$	$118.8(12)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$	$124.2(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 5$	$177.8(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 3$	$179.6(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-2(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 3$	$179.8(13)$
$\mathrm{Br} 5-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 3$	$0.4(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$1.2(19)$
$\mathrm{Br} 5-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-178.2(9)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$.

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.54	$3.354(9)$	159
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.88	$3.612(12)$	144
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{ii}}$	0.86	2.79	$3.608(10)$	160
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{iii}}$	0.86	2.82	$3.604(10)$	153

Symmetry codes: (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $-x+1,-y+1,-z+1$.
supplementary materials

Fig. 1

Fig. 2

